

 Rotating Adaptive Network Defense
(RAND)

Final Report

Team ID: sddec18-07

Client: Argonne National Laboratory, Dr. Benjamin Blakely and Joshua Lyle

Faculty Advisor: Dr. Hongwei Zhang

Team Members and Roles:

Andrew Thai — Project Manager

Connor Ruggles — Usability Manager

Emily Anderson — Deliverable Manager

Ryan Lawrence — Communication Manager

Corey Wright — Quality Assurance Manager

Team email: sddec18-07@iastate.edu

Team Website: https://sddec18-07.sd.ece.iastate.edu/

Table of Contents
List of Figures 3

List of Definitions and Acronyms 3

1 Revised Project Design 4

2 Implementation Details 5

3 Testing 7

3.1 Testing Process 7

3.2 Testing Results 8

4 Related Products/Literature 10

5 Appendices 10

5.1 Operation Manual 10

5.2 Alternative Designs 14

5.3 Other Considerations 14

5.4 Code 14

List of Figures
Figure 1: Visual representation of how Snort and the Floodlight Controller communicate with the network

Figure 2: Detailed design of the internal network

Figure 3: Block diagram of how our implementation is designed based on our servers

Figure 4: Table of testing packet delay results

Figure 5: Load Balancer baseline ping graph

Figure 6: Nikto Scan packet response times

Figure 7: nmap scan packet response times

List of Definitions and Acronyms
SDN: Software-Defined Network

● Software-defined networking is a concept where the actual routing of data packets is moved to a
separate layer and is taken care of programmatically by a network controller, that then sends the
packets down to the main network switch to route to the individual servers on the network.

MTD: Moving Target Defense

● This is a concept where you detect if a specific machine is being attacked and you have preset rules
to mitigate to rotate that machine out of being public facing, and rotate in a “honeypot”, or
something that looks like a real machine but it distracts the attacker long enough to block them
out.

NIC: Network Interface Card

● This is the physical device that connects all of the machines connected to a switch, to the Internet.

CDC: Cyber Defense Competition

● A type of competition where teams try and defend a set of servers against a team of attackers in a
pre-defined scenario.

VM: Virtual Machine

● A software emulation of physical aspects needed to run a full computer operating system.

Honeypot Server

● A server that is used to trap hackers from accessing the actual production systems.

1 Revised Project Design
We revised our project design last semester into this improved design to help create a software defined
network moving target defense system. This design consist of two servers: Floodlight Controller and Snort.
The Floodlight Controller is our brains of the system in which it handles all the traffic routing and dynamic
packet flow. The Open vSwitches that are within the network will connect to the Floodlight Controller and
will route traffic based on the rules that are created within the Floodlight Controller. The Snort server is our
network-based intrusion detection system which handles network traffic and alerts us of any malicious
traffic that may going through our network. These two systems will be put in front of the network of our
Web Server allow for traffic to be blocked or redirected to a honeypot server.

In our design, we have incoming traffic coming from the Internet, once the traffic makes it into the network
where the Snort server is located, Snort will start analyzing all the traffic and alerting for any malicious
traffic that is incoming based on the community rules and the local rules that we have created. We decided
to use Snort as our intrusion detection tool because it will be scalable in the long run with updated
community rules. Once Snort creates an alert we have a custom python script that we created and runs
every 30 seconds on the system (based on using the system’s crontab) that checks if there are any alerts in
the file /var/log/snort/alert. If there are any logs, the script will parse through the alerts to grab the source
and destination IP. Once the script gathers the IP it creates a flow to either block or redirect the current
traffic to a honeypot server by communicating with the Floodlight Controller via API calls.

Figure 1: Visual representation of how Snort and the Floodlight controller communicate
with the network

Once the rules are pushed to the Floodlight Controller, we can see that the overall design made such that
once the alert is created that it will have 3 options: 1) block the traffic 2) redirect the traffic to the honeypot
server 3) let the traffic continue as normal

Figure 2: Detailed design of the internal network

2 Implementation Details

We implemented this design on our own personal server running VMware Hypervisor 6.5 running the
following 4 servers within the VMware Hypervisor:

Floodlight Controller

CPU: 4 vCPUs

RAM: 4 GB

Hard Disk: 16GB

OS: Ubuntu 16.04.4 LTS

Software: Floodlight version 1.2

Snort

CPU: 4 vCPUs

RAM: 4 GB

Hard Disk: 100 GB

OS: Ubuntu 16.04.4 LTS

Software: Snort Version 2.9.11.1 GRE (Build 268)

Kali - Pentesting Machine

CPU: 4 vCPUs

RAM: 2 GB

Hard Disk: 16 GB

XenServer Hypervisor

CPU: 8 vCPUs

RAM: 16 GB

Hard Disk: 255 GB

OS: XenServer 7.3.0

We decided to use the XenServer Hypervisor because it implements Open vSwitch protocols within its
networking so that we can easily use its virtual networking with our Floodlight Controller. Within the
XenServer Hypervisor we have two servers in which one will be acting as our web server and the other as
our honeypot server. They will both be running Ubuntu 16.04.4 LTS with the same web configuration. On
the snort machine we created a file named “idp.py” which is the python script that parses through the log
file /var/log/snort/alert (the location in which snort alerts are created and stored) every 30 seconds because
we created the following two crontab entries:

* * * * * (python idp.py 192.168.1.40)

* * * * * (sleep 30; python idp.py 192.168.1.40)

Where 192.168.1.40 is the IP address of the Floodlight Controller. Once the alert is created then it will send a
python API call using a POST request to the Floodlight Controller that will create the new follow to redirect
or block.

Figure 3: Block diagram of how our implementation is designed based on our servers

3 Testing

3.1 TESTING PROCESS
Testing of the SDN MTD system consisted of two portions. First, our own testing for a baseline with
internal testing of lag due to overhead. Additionally, we attempted to the test results of our system

defending from attacks propagated by the red team during the Community College CDC that was held in
Coover Hall on December 1st, 2018.

To form a baseline to test against for all future applications and to determine the overhead that our new
integration and code causes within our system a Cron tab was setup in our testing environment to run
metrics over time. The crontab measured response time every 30 minutes over several weeks to analyze
packet loads under normal circumstances which provided us with long term, stable numbers on the min,
max, and average ping rates. At that point we could test the ping rates while running various tests including
those that are redirected to the honeypot such as mapping attacks and those that are simply blocked such
as DDoS attacks.

During the Community College CDC held at Iowa State on December 1st our team attempted to set up our
software defined network to be tested by the red team. We migrated the Snort machine with the Floodlight
controller that our work is based on to the required CDC servers. The stated goal of the competition was to
set up administrative servers to be tested against by the red team and to take control of stored simulated
files that emulate an Iowa State administrative system, primarily a Canvas box with stored names,
birthdates, classes, and other assorted information. With our system in place between the “public” facing
connections and the stored information, all malicious traffic should be intercepted and either misdirected
or stopped. Ideal results would show that malicious attacks from the red team are unable to reach our
machines with generated logs from the Canvas box and alerts from the Snort machine. Unfortunately, due
to difficulties with the CDC required machines and their implementation, we were not able to enter this
project into the CDC for testing. While we were not able to compete, we were able to set up our SDN MTD
system with various servers being protected.

3.2 TESTING RESULTS
Through our testing we determined that the packet speed in which a packet transfers to the same server vs
load balancer vs a scan is shown in the table above. We can see that when directly pinging the server we get
a decent average response time, with a comparable response time using the load balancer. With the scans
we determined out of every few hundreds of packets were transferred that we only lost one packet due to
when the rule was added and applied to the controller since there was a long enough delay for that packet
to be dropped not knowing where to go. The average response times for the packets seemed to have
increased during our scanning period to suggest that there is a little more overhead when adding the
Floodlight Controller rule in our network for where the destination of where the packet would be going.
Below are the times of our results as well as graphs to show the ping times during our testing of our
network design:

Packet Test Min (ms) Avg (ms) Max (ms)

Direct 0.34331481 0.66207407 2.70742593

Load Balance 0.34418182 0.68587273 2.42092727

Nikto Scan 0.43866968 0.77452036 5.67220814

Nmap Scan 0.471375 0.719875 1.9785

Figure 4: Table of testing packet delay results

Figure 5: Load Balancer baseline ping graph

Figure 6: Nikto Scan packet response times

Figure 7: nmap scan packet response times

As mentioned above, our testing with the CDC did not go as planned, but we still got some useful
information from it. We were able to set up our system on the competition network without too much
difficulty. There are a lot of small components that need to work together in order for this system to work,
so it was good to test being able to successfully set it up in a simulated network environment. Not being
able to test the functionality, although disappointing, isn’t the end of the world. The attacks run by red
team are so broad that we suspect the results from our specific testing are more useful than those would
have been. Red team will do a variety of attacks that would not necessarily contain just scanning our
machines but of other penetration testing tools that our intrusion detection system, Snort, may not have
alerted which would result in missed opportunities for the design to be fully tested. This is avoided with our
manually testing because we know exactly which types of scans will alert in our intrusion detection system
so we can continuously test our network design and make sure that it gets reasonable results from the rules
that we created.

4 Related Products/Literature
Software Defined Networking Moving Target Defense is a relatively new field with many of the papers and
research in this area published in the last five years. At this point the theory is proven and a lot of the
related literature is on how much of a positive effect such a system can have. Our area of research on the
other hand is to recreate a system that Argonne National Labs can use in their future research and as a
reference and starting point. At Argonne they have a type of hardware moving target defense and wanted to
explore the viability and savings associated with moving to a software defined system.

5 Appendices

5.1 OPERATION MANUAL

Instructions for setting up the network and systems

Configure each of the servers that you have with their own static IP and make sure that the servers that you
will be dynamically routing will be plugged into the OpenFlow compatible switch.

Floodlight Server

Navigate to our git repo and go to the loadbalance directory

cd loadbalance

Setup Load Balance of web servers on your floodlight machine run the configure

loadbalance script with mac addresses

./configureLoadBalance.sh <mac address 1> <mac address 2> <mac address 3>

Then copy and paste the output into the terminal and run it such as the example

below

curl -X POST -d

'{"id":"1","name":"vip1","protocol":"icmp","address":"192.168.1.50","port":"20"}'

http://localhost:8080/quantum/v1.0/vips/

curl -X POST -d '{"id":"1","name":"pool1","protocol":"icmp","vip_id":"1"}'

http://localhost:8080/quantum/v1.0/pools/

curl -X POST -d '{"id":"2","name":"pool2","protocol":"tcp","vip_id":"1"}'

http://localhost:8080/quantum/v1.0/pools/

curl -X POST -d '{"id":"1","address":"192.168.1.43","port":"2","pool_id":"1"}'

http://localhost:8080/quantum/v1.0/members/

curl -X POST -d '{"id":"2","address":"192.168.1.44","port":"3","pool_id":"1"}'

http://localhost:8080/quantum/v1.0/members/

curl -X POST -d '{"id":"3","address":"192.168.1.45","port":"7","pool_id":"1"}'

http://localhost:8080/quantum/v1.0/members/

Start snort server such that the alerts output to the log file. We created a script to start snort and ran it in a
screen session to allow for easy accessibility of restarting and configuring snort.

Start screen session

Screen -S snort

Navigate to snort directory in our git repo

cd snort

Run start script for snort

./start_snort.sh

Exit screen session

Control-A Control-D

this will print out a message like

“[detached from <name of screen session>]”

if you want to get back into the same screen session that snort is running in,

you can run the command below

screen -r <name of screen session>

We will need to connect the XenServer OpenFlow switches to the Floodlight Controller

OpenFLow command to connect to switch to the Floodlight Controller

ovs-vsctl set-controller xenbr0 tcp:<floodlight controller ip>:6653

In order to set up Floodlight, the interface and the optional CORS reroute backend, head over to
https://git.ece.iastate.edu/sd/sddec18-07/tree/master and read all of the corresponding README’s. They
outline everything that needs to be done in order to set up the Floodlight software and the new GUI (Note:
There’s an optional NodeJS backend that can be started to get around a CORS issue with the Floodlight
server, you can read the README in the ‘cors-reroute-backend’ folder in the link above to get more details).

First, you’ll need NodeJS, Java, ant and git installed. Then, you’ll need to clone the repository to the
machines that are running the interface and floodlight, if there is more than one. Read the README in the
repository to find out how to run the startup script and which options to provide in order to start the
correct servers. For all files, directories, and filepaths that are mentioned in this section assume that the
working directory is the cloned repository directory.

On the machine that you want to start the interface, go to the file ‘interface/src/config.ts’. There are a few
variables that need to be looked at:

● NEEDS_CORS_REROUTE

○ By default set to true. This variable will determine whether the interface attempts to send
it’s requests to the optional backend or the Floodlight server

https://git.ece.iastate.edu/sd/sddec18-07/tree/master

● PORT

○ The port that the interface should send the requests to, which is determined by the
‘NEEDS_CORS_REROUTE’ variable. This should not be changed, unless you change the
ports that the optional backend and Floodlight are started on

● API_ROUTE

○ The IP address that Floodlight is running on; change this to whatever the IP is of the
machine you would like to put Floodlight on

● MAC

○ The MAC address of the machine that floodlight is running on; this could potentially be
changed to an Array or a Map, if more than one machine will be set up to run Floodlight

As a quick reference, you can start Floodlight and the optional backend by running the ‘start_floodlight.sh’
script with the ‘-cors’ option, but as noted in the script and all of the README’s, you only need to start the
optional backend if you want to run the interface on a different machine than Floodlight. If you want to
start Floodlight and the interface on the same machine, just run the ‘start_floodlight.sh’ script with no
options, as that is the normal behavior.

If you intend to use the ‘cors-reroute-backend’ app, there’s a variable similar to the interface that will need
to be changed in ‘cors-reroute-backend/lib/app.ts’:

● API_ROUTE
○ The IP or hostname of the server that Floodlight is running on. Change this to whatever is

correct for your setup

That script (start_floodlight.sh) runs all the commands necessary to start all servers, but here are those
same commands in case the script just won’t quite do the job, or your software setup isn’t how the script
might expect it to be:

start the floodlight server

cd floodlight
ant

java -jar target/floodlight.jar

start the optional backend

cd cors-reroute-backend
npm install

for dev purposes

npm run dev

for compiling and starting a prod version

npm start

start the interface

cd interface
npm install

npm run start

Instructions for configuring action automation script

The following is an example portion of a script for automating addition of flows to the floodlight controller.
This specific example is a transparent redirect from any source pointing at the loadbalancer to a honeypot
server. Important information needed here is the destination ip, mac address, and port of the honeypot,
address of the switch, and ip of the loadbalancer. Upon swapping these fields with correct information, the
follows will be automated any time a specific type of protocol matches.

src_data = pusher.get_rest_call (src_ip, 'GET')

src_parsedData = json.loads(src_data)

src_mac = json.dumps(src_parsedData['devices'][0]['mac'][0])

src_macAddress = src_mac.replace('"','')

src_port =

 json.dumps(src_parsedData['devices'][0]['attachmentPoint'][0]['port'][0])

src_port = src_port.replace('"','')

flow1 = {

 'Switch':"00:00:d2:bd:aa:aa:ca:56", (Switch address)

 "name":name,

 "cookie":"0",

 "priority":"32767",

 "in_port":src_port,

 "active":"true",

 "eth_type": "0x0800",

 "eth_src": src_macAddress,

 "ipv4_src": src_ip,

 "ipv4_dst": "192.168.1.50", (Load Balancer IP)

 "hard_timeout":"240",

 "actions":

 "set_field=eth_dst->12:c4:47:10:52:75, (Honeypot Mac)

 set_field=ipv4_dst->192.168.1.46, (Honeypot IP)

 output=4" (Honeypot Port)

}

name += 1

flow2 = {

 'Switch':"00:00:d2:bd:aa:aa:ca:56", (Switch address)

 "name":name,

 "cookie":"0",

 "priority":"32767",

 "in_port":"4",

 "active":"true",

 "eth_type": "0x0800",

 "eth_src": "12:c4:47:10:52:75", (Honeypot Mac)

 "eth_dst": src_macAddress,

 "ipv4_src": "192.168.1.46", (Honeypot IP)

 "ipv4_dst": src_ip,

 "hard_timeout":"240",

 "actions":"set_field=ipv4_src->192.168.1.50, (Loadbalancer IP)

 output="+src_port

}

For an action consisting of blocking, the actions field can be removed from flow1 to push a static field
blocking by the source IP, mac address, and port.

For an in-depth reference, you can look at this script in our repository:
https://git.ece.iastate.edu/sd/sddec18-07/blob/master/snort/idp.py

5.2 ALTERNATIVE DESIGNS
We looked at using OpenDaylight and Open vSwitch to be our SDN controller software, but ended up
settling on Floodlight because it fit our needs more than the other two. However, we did end up using
Open vSwitch as part of our network stack.

Another option we tried was an alternative to using Snort. We started writing customized Floodlight
modules to detect the malicious traffic, but we eventually decided to stop. The modules were difficult to
integrate and did not work well even after spending countless hours on them. We decided it was too much
work for its worth when we could use Snort to do the exact same thing and it was way more user-friendly.
Snort is also the better choice because if our client expands on our project after we are finished, it is much
easier to customize and expand.

Due to our choosing Floodlight as our SDN controller, we started using the interface to utilize Floodlight.
This led to us really hating it, and deciding that we needed to create our own since we could use the
Floodlight API that is accessible on our local instance. The decision to create a simpler and more
performant interface wasn’t made until about halfway through the first semester, so we had to change up
our design a bit due to that decision.

5.3 OTHER CONSIDERATIONS
A couple times while testing DDoS attacks, we took down Andrew’s entire home network which is what we
used for testing.

5.4 CODE
Link to repository with all code: https://git.ece.iastate.edu/sd/sddec18-07/tree/master

https://git.ece.iastate.edu/sd/sddec18-07/blob/master/snort/idp.py
https://git.ece.iastate.edu/sd/sddec18-07/tree/master

